Attenuating burn wound inflammatory signaling reduces systemic inflammation and acute lung injury.
نویسندگان
چکیده
The relationship between local inflammation and the subsequent systemic inflammatory response is poorly described. In a burn injury model, the dermal inflammatory response may act as an ongoing trigger for the systemic inflammatory response syndrome (SIRS) and subsequent systemic complications. We hypothesized that topical attenuation of burn wound inflammatory signaling will control the dermal inflammatory source, attenuate SIRS, and reduce acute lung injury. Mice received a 30% total body surface area burn. Subgroups were treated with specific p38 MAPK inhibitor or vehicle, which was topically applied to wounds. Topical p38 MAPK inhibition significantly reduced burn wound inflammatory signaling and subsequent systemic expression of proinflammatory cytokines and chemokines. In vitro macrophage functional assays demonstrated a significant attenuation in serum inflammatory mediators from animals receiving the topical inhibitor. Topical p38 MAPK inhibition resulted in significantly less pulmonary inflammatory response via reduction of pulmonary neutrophil sequestration, pulmonary cytokine expression, and a significant reduction in pulmonary microvascular injury and edema formation. Although dermal activating transcription factor-2, a downstream p38 MAPK target, was significantly reduced, there was no reduction in pulmonary activating transcription factor-2 expression, arguing against significant systemic absorption of the topical inhibitor. These experiments demonstrate a strong interaction between dermal inflammation and systemic inflammatory response. Attenuating local inflammatory signaling appears effective in reducing SIRS and subsequent systemic complications after burn injury.
منابع مشابه
Parecoxib Reduces Systemic Inflammation and Acute Lung Injury in Burned Animals with Delayed Fluid Resuscitation
Burn injuries result in the release of proinflammatory mediators causing both local and systemic inflammation. Multiple organ dysfunctions secondary to systemic inflammation after severe burn contribute to adverse outcome, with the lungs being the first organ to fail. In this study, we evaluate the anti-inflammatory effects of Parecoxib, a parenteral COX-2 inhibitor, in a delayed fluid resuscit...
متن کاملExosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation
Mesenchymal stem cell (MSC)-derived exosomes have diverse functions in regulating wound healing and inflammation; however, the molecular mechanism of human umbilical cord MSC (hUCMSC)-derived exosomes in regulating burn-induced inflammation is not well understood. We found that burn injury significantly increased the inflammatory reaction of rats or macrophages exposed to lipopolysaccharide (LP...
متن کاملRole of hydrogen sulfide in severe burn injury-induced inflammation in mice.
Endogenous hydrogen sulfide (H(2)S) is naturally synthesized in many types of mammalian cells from L-cysteine in the reactions catalyzed by cystathionine-β-synthase and cystathionine-γ-lyase (CSE). H(2)S has been demonstrated to play a proinflammatory role in various animal models of hindpaw edema, acute pancreatitis, lipopolysaccharide-induced endotoxemia and cecal ligation, and puncture-induc...
متن کاملSIRT1 protects rat lung tissue against severe burn-induced remote ALI by attenuating the apoptosis of PMVECs via p38 MAPK signaling
Silent information regulator type-1 (SIRT1) has been reported to be involved in the cardiopulmonary protection. However, its role in the pathogenesis of burn-induced remote acute lung injury (ALI) is currently unknown. The present study aims to investigate the role of SIRT1 in burn-induced remote ALI and the involved signaling pathway. We observed that SIRT1 expression in rat lung tissue after ...
متن کاملProlonged C1 inhibitor administration improves local healing of burn wounds and reduces myocardial inflammation in a rat burn wound model.
In a previous study, the authors found persistent presence of acute inflammation markers such as C-reactive protein and complement factors locally in burn wounds. This persistence of acute inflammation may not only delay local burn wound healing but also have a systemic effect, for instance on the heart. Here, the effects of C1 esterase inhibitor (C1inh), an inhibitor of complement activation, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 177 11 شماره
صفحات -
تاریخ انتشار 2006